Functional programming for beginners

Happy New Year everyone; I hope you had a pleasant and relaxing festive holiday season. I sure did.

I’m starting the new year off by giving a short — an hour long or so — talk on how you can use ideas from functional programming languages in C#. It will broadcast this coming Wednesday, the 13th of January, at 10AM Pacific, 1PM Eastern.

The talk will be aimed straight at beginners who have some experience with OOP style in C# but no experience with functional languages. I’ll cover ways to avoid mutating variables and data structures, passing functions as data, how LINQ is functional, and some speculation on future features for C# 7.

There may also be funny pictures downloaded from the internet.

Probably it will be too basic for the majority of readers of this blog, but perhaps you have a friend or colleague interested in this topic.

Thanks once again to the nice people at InformIT who are sponsoring this talk. You can get all the details at their page:

http://www.informit.com/promotions/webcast-a-beginners-guide-to-functional-programming-141067

In related news, I am putting together what will be a very, very long indeed series of blog articles on functional programming, but not in C#. Comme c’est bizarre!

Foreshadowing: your sign of a quality blog. I’ll start posting… soon.

What is up with transparent identifiers? Part two

This will be my last post before I head off for my annual vacation in Canada; see you again in September for more Fabulous Adventures in Coding!


Last time on FAIC I suggested a rule for translating nested “from” query expressions into a much simpler form than the C# specification requires. Why does the C# specification not use my simplified form?

In fact what I showed yesterday is pretty close to what the LINQ translation rules for SelectMany queries looked like shortly before shipping C# 3.0. The problem with it becomes apparent when you consider the following: Continue reading

What is up with transparent identifiers? Part one

A query expression in C# is, as you probably know, just a syntactic sugar for a bunch of method calls. For example,

from customer in customers
where customer.City == "London"
select customer.LastName

is a syntactic sugar for

customers.
  Where(customer => customer.City == "London").
  Select(customer => customer.LastName)

A great many queries are straightforward variations on this pattern: the query is translated into a series of method calls where the arguments are lambdas formed from the range variables and expressions in the query. However, some of them are weird. This one is straightforward: Continue reading

Real world async/await defects

Today I’m once again asking for your help.

The headliner feature for C# 5 was of course the await operator for asynchronous methods. The intention of the feature was to make it easier to write asynchronous programs where the program text is not a mass of inside-out code that emphasizes the mechanisms of asynchrony, but rather straightforward, easy-to-read code; the compiler can deal with the mess of turning the code into a form of continuation passing style.

However, asynchrony is still hard to understand, and making methods that allow other code to run before their postconditions are met makes for all manner of interesting possible bugs. There are a lot of great articles out there giving good advice on how to avoid some of the pitfalls, such as:

These are all great advice, but it is not always clear which of these potential defects are merely theoretical, and which you have seen and fixed in actual production code. That’s what I am very interested to learn from you all: what mistakes were made by real people, how were they discovered, and what was the fix?

Here’s an example of what I mean. This defect was found in real-world code; obviously the extraneous details have been removed:

Frob GetFrob()
{
  Frob result = null;
  var networkDevice = new NetworkDevice();
  networkDevice.OnDownload += 
    async (state) => { result = await Frob.DeserializeStateAsync(state); };
  networkDevice.GetSerializedState(); // Synchronous
  return result; 
}

The network device synchronously downloads the serialized state of a Frob. When it is done, the delegate stored in OnDownload runs synchronously, and is passed the state that was just downloaded. But since it is itself asynchronous, the event handler starts deserializing the state asynchronously, and returns immediately. We now have a race between GetFrob returning null, and the mutation of closed-over local result, a race almost certainly won by returning null.

If you’d rather not leave comments here — and frankly, the comment system isn’t much good for code snippets anyways — feel free to email me at eric@lippert.com. If I get some good examples I’ll follow up with a post describing the defects.

Lowering in language design, part one

Programming language designers and users talk a lot about the “height” of language features; some languages are considered to be very “high level” and some are considered to be very “low level”. A “high level” language is generally speaking one which emphasizes the business concerns of the program, and a low-level language is one that emphasizes the mechanisms of the underlying hardware. As two extreme examples, here’s a program fragment in my favourite high-level language, Inform7:
Continue reading

Dynamic contagion, part two

This is part two of a two-part series on dynamic contagion. Part one is here.


Last time I discussed how the dynamic type tends to spread through a program like a virus: if an expression of dynamic type “touches” another expression then that other expression often also becomes of dynamic type. Today I want to describe one of the least well understood aspects of method type inference, which also uses a contagion model when dynamic gets involved. Continue reading

Out parameters and LINQ do not mix

What’s wrong with this code?

var seq = new List<string> { "1", "blah", "3" }; 
int tmp; 
var nums = 
  from item in seq   
  let success = int.TryParse(item, out tmp)   
  select success ? tmp : 0;

The intention is pretty clear: take a sequence of strings and produce a sequence of numbers by turning the elements that can be parsed as numbers into those numbers and the rest into zero.

The C# compiler will give you a definite assignment error if you try this, which seems strange. Why does it do that? Well, think about what code the compiler will translate the last statement into:

var nums =
   seq.Select(item=>new {item, success = int.TryParse(item, out tmp)})
   .Select(transparent => transparent.success ? tmp : 0);

We have two method calls and two lambdas. Clearly the first lambda assigns tmp and the second reads it, but we have no guarantee whatsoever that the first call to Select invokes the lambda! It could, for some bizarre reason of its own, never invoke the lambda. Since the compiler cannot prove that tmp is definitely assigned before it is read, this program is an error.

So is the solution then to assign tmp in the variable declaration? Certainly not! That makes the program compile, but it is a “worst practice” to mutate a variable like this. Remember, that one variable is going to be shared by every delegate invocation! In this simple LINQ-to-Objects scenario it is the case that the delegates are invoked in the sensible order, but even a small change makes this nice property go out the window:

int tmp = 0; 
var nums =
  from item in seq
  let success = int.TryParse(item, out tmp)
  orderby item
  select success ? tmp : 0; 
foreach(var num in nums) 
  Console.WriteLine(num);

Now what happens?

We make an object that represents the query. The query object consists of three steps: do the let projection, do the sort, and do the final projection. Remember, the query is not executed until the first result from it is requested; the assignment to “nums” just produces an object that represents the query, not the results.[1. As I have often said, if I could tell new LINQ users just one thing, it is that fact: query expressions produce a query, not a result set.]

Then we execute the query by entering the body of the loop. Doing so initiates a whole chain of events, but clearly it must be the case that the entire let projection is executed from start to finish over the whole sequence in order to get the resulting pairs to be sorted by the orderby clause. Executing the let projection lambda three times causes tmp to be mutated three times. Only after the sort is completed is the final projection executed, and it uses the current value of tmp, not the value that tmp was back in the distant past!

So what is the right thing to do here? The solution is to write your own extension method version of TryParse the way it would have been written had there been nullable value types available in the first place:

static int? MyTryParse(this string item) {
  int tmp;
  bool success = int.TryParse(item, out tmp);
  return success ? (int?)tmp : (int?)null; 
}

And now we can say:

var nums = 
  from item in seq 
  select item.MyTryParse() ?? 0;

The mutation of the variable is now isolated to the activation of the method, rather than a side effect that is observed by the query. Try to always avoid side effects in queries.


Thanks to Bill Wagner for the question that inspired this blog entry.


Next time on FAIC: Wackiness ensues!